ПРАКТИЧЕСКОЕ ЗАНЯТИЕ З

Кодирование информации. Системы счисления

Основное содержание:

- о Перевод вещественных чисел в р-ичную систему счисления.
- о Перевод чисел в десятичную систему счисления

Ход занятия

Теоретический материал

Системы счисления. Кодирование числовой информации

При обмене информацией между людьми используются естественные языки. В основе языка лежит алфавит, то есть набор символов (знаков), которые человек различает по их начертанию. Например, в основе русского языка лежит кириллица, содержащая 33 знака, английский язык использует латиницу (26 знаков), китайский язык использует алфавит из десятков тысяч знаков (иероглифов).

Наряду с естественными языками были разработаны формальные языки (системы счисления, язык алгебры, языки программирования и др.). Основное отличие формальных языков от естественных состоит в наличии строгих правил грамматики и синтаксиса. Например, системы счисления можно рассматривать как формальные языки, имеющие алфавит (цифры) и позволяющие не только именовать и записывать объекты (числа), но и выполнять над ними арифметические операции по строго определенным правилам.

Системы счисления

Системой счисления называется знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

Существуют **позиционные** и **непозиционные системы счисления.** В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Пример непозиционной системы счисления - римская система, в которой в качестве цифр используются латинские буквы: I, V, X, L, C, D, M.

Например, VI = 5 + 1 = 6, а IX = 10 - 1 = 9.

Позиционные системы счисления

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Десятичная система счисления является позиционной.

Каждая позиционная система характеризуется алфавитом и основанием. Основание системы равно количеству цифр (знаков в алфавите). Основание определяет, во сколько раз различаются значения цифр соседних разрядов числа. В общем случае, если число в системе счисления с основанием n>1 записано как abcd, то значение числа вычисляется по формуле: $an^3 + bn^2 + cn^1 + dn^0$. Таким образом, числа в позиционных системах счисления записываются в виде суммы степеней основания, при этом в роли коэффициентов выступают цифры данного числа.

Первая известная нам система, основанная на позиционном принципе - шестидесятеричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим - десятки.Следы вавилонской системы сохранились до

наших дней в способах измерения и записи величин углов и промежутков времени. Наиболее употребительными в настоящее время являются десятичная и двоичная позиционные системы счисления.

Кодирование информации.

Код — система условных знаков (символов) для передачи, обработки и хранения информации (сообщения).

Кодирование — процесс представления информации (сообщения) в виде кода. Все множество символов, используемых для кодирования, называется алфавитом кодирования.

Например, в памяти компьютера любая информация кодируется с помощью двоичного алфавита, содержащего всего два символа: 0 и 1.

Научные основы кодирования были описаны К.Шенноном, который исследовал процессы передачи информации по техническим каналам связи (теория связи, теория кодирования). При таком подходе кодирование понимается в более узком смысле: как переход от представления информации в одной символьной системе к представлению в другой символьной системе. Например, преобразование письменного русского текста в код азбуки Морзе для передачи его по телеграфной связи или радиосвязи. Такое кодирование связано с потребностью приспособить код к используемым техническим средствам работы с информацией.

Декодирование — процесс обратного преобразования кода к форме исходной символьной системы, т.е. получение исходного сообщения. Например: перевод с азбуки Морзе в письменный текст на русском языке. В более широком смысле декодирование — это процесс восстановления содержания закодированного сообщения. При таком подходе процесс записи текста с помощью русского алфавита можно рассматривать в качестве кодирования, а его чтение — это декодирование.

Кодирование числовой информации.

Как правило числовая информация кодируется путем перевода числа из одной системы счисления в другую.

Пример 1.

Переведите число 101012 в десятичную систему счисления.

Решение

 $10101_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 16 + 4 + 1 = 21_{10}$.

Ответ: $10101_2 = 21_{10}$.

Пример 2.

Переведите число 123124 в десятичную систему счисления.

Решение

 $123124 = 1 \cdot 4^4 + 2 \cdot 4^3 + 3 \cdot 4^2 + 1 \cdot 4^1 + 2 \cdot 4^0 = 256 + 128 + 48 + 4 + 2 = 438_{10}$.

Ответ: $12312_{42} = 438_{10}$.

Пример 3.

Переведите число 239₁₀ в пятиричную систему счисления.

Решение

Последовательно делим исходное десятичное число и получаемые частные на основание системы (в данном задании – 5) нацело до тех пор, пока не получится частное, равное нулю. Полученные остатки от целочисленного деления записываем в обратной последовательности.

239:5=47 (ост. 4)

47:5=9 (ост.2)

9:5=1 (ост.4)

Остатки в обратной последовательности: 1 - 4 - 2 - 4

Ответ: $(239)_{10} = (1424)_5$

Взаимосвязь двоичной, четверичной, восьмеричной и шестнадцатеричной систем счисления

10-чная	2-чная	4-чная	8-чная
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	10	4
5	101	11	5
6	110	12	6
7	111	13	7
8	1000	20	10
9	1001	21	11
10	1010	22	12
11	1011	23	13
12	1100	30	14
13	1101	31	15
14	1110	32	16
15	1111	33	17
16	10000	100	20

На примере четверичной системы из таблицы видно, что один разряд четверичной системы соответствует двум разрядам двоичной, что вполне справедливо, если учесть, что основания системы нацело делятся одно на другое. Таким образом, перевод из двоичной системы в четверичную можно проводить по упрощенной схеме – разбив двоичные разряды на пары справа налево и заменив пары соответствующими цифрами четверичной записи.

Аналогичная ситуация – с восьмеричной и шестнадцатеричной системой: здесь двоичный код разбивается на тройки (триады) или четверки (тетрады) соответственно.

Пример 5.

Переведите число 1101010102 в восьмеричную систему счисления.

Решение

 $110101010_2 = 110\ 101\ 010 = 652_8$.

Ответ: $110101010_2 = 652_8$.

Общие рекомендации по решению примеров

При переводе числа из одной системы счисления в другую используются различные приемы, позволяющие сделать это достаточно быстро.

1) Перед началом решения задач этого типа необходимо затратить несколько минут на составление таблицы соответствия чисел десятичной, двоичной, четверичной, восьмеричной и шестнадцатеричной систем счисления. Это поможет достаточно быстро осуществить перевод числа из двоичной системы счисления в соответствующую систему счисления.

- Для перевода из двоичной системы счисления в четверичную необходимо исходное двоичное число разбить на группы, начиная справа по два символа, затем каждую группу перевести в четверичное число.
- Для перевода из двоичной системы счисления в восьмеричную необходимо исходное двоичное число разбить на группы (триады), начиная справа по три символа, затем каждую группу перевести в восьмеричное число.
- Для перевода из двоичной системы счисления в шестнадцатеричную необходимо исходное двоичное число разбить на группы (тетрады), начиная справа по четыре символа, затем каждую группу перевести в шестнадцатеричное число.
- 2) При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q-1. Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

При переводе числа из десятичной системы счисления в двоичную можно так же пользоваться следующим способом записи:

Исходное число делят на 2, результат пишут под исходным числом, а справа от черты в строке с исходным числом ставят - 0, если деление без остатка, и 1, если остаток есть. Деление повторяют до тех пор, пока делимое не станет меньше делителя. Считывание результата производится снизу вверх.

3) При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы счисления в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

Примеры:

```
1011,1_2 = 1 \cdot 2^3 + 1 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} = 11,5_{10}.

276,5_8 = 2 \cdot 8^2 + 7 \cdot 8^1 + 6 \cdot 8^0 + 5 \cdot 8^{-1} = 190,625_{10}.

1F3_{16} = 1 \cdot 16^2 + 15 \cdot 16^1 + 3 \cdot 16^0 = 499_{10}.
```

4) При переводе правильной десятичной дроби в систему счисления с основанием q необходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательно умножать на q, отделяя после каждого умножения целую часть произведения. Число в новой системе счисления записывается как последовательность полученных целых частей произведения.

Умножение производится до тех пор, пока дробная часть произведения не станет равной нулю. Это значит, что сделан точный перевод. В противном случае перевод осуществляется до заданной точности. Достаточно того количества цифр в результате, которое поместится в ячейку.

Пример:

Перевести число 0,25 из десятичной системы в двоичную:

 $0.25 \cdot 2 = 0.5 \rightarrow 0$ $0.5 \cdot 2 = 1.0 \rightarrow 1$

Ответ: $0.25_{10} = 0.01_2$

Если дробь имеет целую и дробную часть, целую часть необходимо делить на основание q, а дробную умножать на это основание.

Пример:

Перевести число 5,75 из десятичной системы в двоичную:

5	1
2	0
1	

 $5_{10} = 101_2$

 $0,75 \cdot 2 = 1,5 \rightarrow 1$

 $0.5 \cdot 2 = 1.0 \rightarrow 1$ Other: $5.75_{10} = 101.11_2$

Домашнее задание:

Решите задачу 1.

Рассмотри таблицу:

Буква	Код
Α	0
М	1

Напиши в «Блокноте» слово, используя код: МАМА

Ответ. 1010

Решите задачу 2.

Мартышка написала записку. Что здесь написано? Запиши.

4	2	3	0	9	4	9	1	3	5	9	6	3	1	8	6	4	10	7	0
																			Г
С	$\overline{\Box}$		4+2	-1		Т		Ī	У	T		9+1	-6		T		T		
И			10-1	-1		\top		1 1	Л	\top		4+7	'-1		\top		1		
P			2+2	-2		Т		1	К			4+3	-1		Т		1		
Н		5	+6-	10				1		\top		1+5	+3				1		
Ь		- 1	3+3	+1		Т] [Α			8-3	-2]		
								. [!			10-7	7-3]		

Ответ. Ура! У нас каникулы!

Решите задачу 3.

Рассмотри таблицу:

Α	Б	В	Γ	Д	Е	Ë	Ж	3	И	Й	К	Л	М	Н	0	П
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\overline{}$																
P 18	С	Т	У	Φ	Х	Ц	Ч	Ш	Щ	Ь	ы	Ъ	Э	Ю	Я	

Составь слова по номерам букв в алфавите и запиши в "Блокнот"

1	4	29	26	12	1	14	16	15	10	20	16	18

Ответ. Мышка Монитор

Решите задачу 4.

Продолжи:

К	Л	Α	В	И	Α	Т	У	Р	Α	П	Α	М	Я	Т	Ь
12										17					
									=	=			_		
												Д			
10	15								33	12					

Ответ. Клавиатура - 12 13 1 3 10 1 20 21 18 1.

Память - 17 1 14 33 20 28.

Информация - 10 15 22 16 18 14 1 24 10 33. Код - 12 16 5