ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 4

Элементы комбинаторики, теории множеств и математической логики

Основное содержание:

Операции над множествами. Число элементов множества

Ход занятия

Теоретический материал

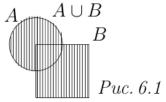
Операции над множествами

Определение Объединением элементов двух множеств A и B называется множество всех элементов этих множеств, каждый из которых является элементом A или элементом B, или принадлежит и тому, и другому множеству одновременно.

Обозначается объединение множеств следующим образом:

$$A \cup B = \{x : x \in A$$
 или $x \in B$ или $x \in A$ и $B\}$.

Графически объединение множеств можно изобразить

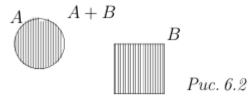


На рисунке заштриховано объединение элементов множеств A и B, содержащих общие элементы.

Например, если множество A состоит из тех, кто знает английский язык, а множество B — из тех, кто знает немецкий язык, то объединение $A \cup B$ включает как тех, кто знает только английский или только немецкий, так и тех, кто знает оба эти языка.

Определение Объединение элементов множеств A и B, не имеющих общих элементов, называется суммой множеств и обозначается

$$A + B = \{x : x \in A$$
или $x \in B\}.$



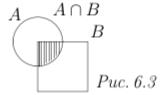
Так, если элементами множества A являются знающие только английский язык, а элементами множества B — знающие только немецкий, то суммой множеств A+B является множество знающих только один иностранный язык.

На рисунке 6.2 ваштриховано объединение элементов множеств A и B, не имеющих общих элементов.

Определение Пересечением множеств элементов A и B называется множество общих элементов этих множеств.

$$A \cap B = \{x : x \in A \bowtie x \in B\}.$$

Графически пересечение множеств можно изобразить так



В приведённом примере со знанием языков пересечением множеств является множество людей, знающих одновременно английский и немецкий языки.

Определение Произведением множеств элементов A и B называется множество пар элементов (a;b), в которых $a \in A$, $a \ b \in B$, то есть

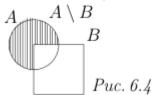
$$AB = \{(a;\, b):\, a \in A,\, b \in B\}.$$

Если, например, элементами множества A знающие только английский язык, а элементами множества B — знающие только немецкий, то можно образовать произведение множеств AB как множество пар, в каждой из которых один знает только английский, а другой — только немецкий.

Определение Pазностью множеств элементов A и B называется множество тех элементов множества A, которые не являются элементами множества B, то есть

$$A \setminus B = \{a: a \in A, a \notin B\}.$$

Графически разность множеств $A \setminus B$ можно изобразить так



В примере с языками разность множеств представляет множество знающих английский язык, но не знающих немецкий.

Предположим, что Ω — представляет универсальное множество всех изучаемых элементов, а \emptyset — пустое множество, то есть множество не содержащее ни одного элемента. С помощью этих множеств можно дать следующее

Определение Дополнением множества A (до универсального множества Ω) называется множество всех элементов универсального множества, которые не принадлежат множеству A, то есть

$$\bar{A} = \{x: \, x \in \Omega, \, x \notin A\}.$$

Например, в ситуации с языками \bar{A} — множество людей, незнающих английский, а \bar{B} — множество людей, незнающих немецкий.

Сформулируем несколько следствий из приведённых определений.

Следствие 1. $A + B = (A \cup B) \setminus (A \cap B)$.

Следствие 2. $A + \bar{A} = \Omega$; $A \cap \bar{A} = \emptyset$.

Следствие 3. $A \setminus B = A \cap \bar{B}$.

Замечание 1. В дальнейшем нам понадобятся такие неопределяемые понятия как *опыт* или *эксперимент*.

Далее под опытом или экспериментом будем понимать некоторую воспроизводимую совокупность физических условий, на фоне которых наступает изучаемое явление, фиксируется тот или иной результат.

Опыт или эксперимент представляют некоторое универсальное множество Ω , элементами которого являются ω исходы опыта (или ω исходы эксперимента). При этом исходы будут делиться на благоприятные исходы и неблагоприятные исходы. Благоприятные исходы будут образовывать изучаемые события, которые будут обозначаться прописными буквами латинского алфавита: A, B, C, \ldots Таким образом, событие A можно определить как подмножество исходов ω некоторого опыта Ω , то есть

$$A=\{\omega\}\subseteq\Omega.$$

С помощью данных определений и следствий обратимся к изучению комбинаторики, в основе которой лежат два правила — *правило суммы* и *правило произведения*.

Контрольные вопросы

- 1. Понятие множества.
- 2. Назовите основные способы задания множеств.
- 3. Сформулируйте определение операции над множествами: объединение, пересечение, разность, симметричная разность и дополнение.

Практический материал

Пример 1. Даны два множества: $A = \{2; 6; 8; 10; 14\}$ и $B = \{-2; 6; 8; 14; 18\}$. Найти $A \cup B$ и $B \cap A$.

Решение:

Используя определения операций объединения и пересечения, запишем:

$$A \cup B = \{-2, 2, 6, 8, 10, 14, 18\}$$

$$B \cap A = \{6; 8; 14\}.$$

Пример 2. Даны два множества: $A = \{1; 4; 8; 10; 12\}$ и $B = \{2; 6; 10; 11\}$. Найти B/A и $A\Delta B$.

Решение:

Используя определения операций разности и симметричной разности, запишем:

$$B \setminus A = \{2; 6; 11\}$$

$$A\Delta B = \{1; 2; 6; 8; 11; 12\}.$$

Пример 3. Дано множество $X = \{x : x \in Q\}$ (Q – рациональные числа). Найти дополнение к множеству X. Универсальное множество U – множество действительных чисел.

Решение:

Из материала лекции N^2 следует, что действительные числа представляют собой совокупность рациональных и иррациональных чисел. Таким образом, дополнением к множеству X будет являться множество иррациональных чисел:

$$\overline{X} = R \setminus X = \{y : y \in K\}$$
 (K – иррациональные числа).

Пример 4. Даны множества на числовой прямой A = [-1,1]; $B = (-\infty,0)$; C = (0,2). Найти следующие множества: $A \cup C$; $A \cap B$; $(A \cup B) \cap C$ и изобразить их на числовой оси.

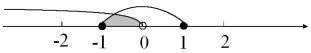
Решение:

Множество $A \cup C$ состоит из точек числовой прямой, которые принадлежат либо множеству A , либо множеству C :

$$A \cup C = [-1, 2).$$

Множество $A \cap B$ состоит из точек числовой прямой, которые принадлежат одновременно и множеству A и множеству B .

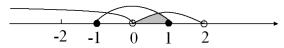
$$A \cap B = [-1, 0).$$



Множество $(A \cup B) \cap C$ состоит из точек числовой прямой, которые принадлежат одновременно множеству $A \cup B$ и множеству C. Построим множество $A \cup B$:

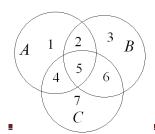
$$A \cup B = (-\infty, 1].$$

Построим множество $(A \cup B) \cap C = (0, 1]$.



Задачи для самостоятельного решения

- 1. Равны ли множества:
- a) $\vec{A} = \{2, 4, 5\}$ и $\vec{B} = \{2, 4, 2, 5\}$; б) $\vec{A} = \{1, 2\}$ и $\vec{B} = \{\{1, 2\}\}$.
- 2. Перечислите элементы следующих множеств:
- а) множество всех двухзначных натуральных чисел, делящихся на 5, но не делящихся на 10;
- б) множество всех чисел от 0 до 30, которые можно представить в виде суммы квадратов двух натуральных чисел.
 - **3.** Даны два множества: $A = \{1; 2; 3; 11\}$ и $B = \{2; 6; 8; 18\}$. Найти $A \cap B$ и $B \setminus A$.
 - **4.** Даны два множества: $A = \{a; b; c; d; e; q\}$ и $B = \{a; l; k; c\}$. Найти $A \cup B$ и $A \Delta B$.
- **5.** Даны множества на числовой прямой A, B и C. Найти множества $A \cup C$; $A \cap B$; $(A \cap B) \cup C$ и изобразить их на числовой оси: $A = \begin{bmatrix} -3,-1 \end{bmatrix}$, $B = \begin{pmatrix} -\infty,-2 \end{pmatrix}$, $C = \begin{bmatrix} -2,0 \end{pmatrix}$.
- **6.** Пусть A множество натуральных чисел кратных 2, B множество натуральных чисел кратных 5. Универсальное множество множество натуральных чисел. Описать множества: a) $A \cup B$, б) $\overline{A \cup B}$, г) $\overline{A} \cap B$.



7. На диаграмме Эйлера-Вена изображены множества A , B и C . Какие области соответствуют следующим множествам: а)

 $A \cap B \cap C$; б) $(A \cup B) \cap C$; в) $(A \setminus B) \cap C$; г) $(A \cup C) \setminus B$; д) $(A \cap B) \cup C$; е) $(C \setminus A) \cup B$; ж) $C \setminus (B \cap A)$

- 8. Опишите каждое из следующих множеств, используя подходящее свойство:
- a) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
- б) {3, 6, 9, 12, 15};
- в) {1, 4, 9, 16, .25};
- г) {10, 12, 14, 16};
- д) {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
- e) {-1, +1}.
- 9. Пусть A множество целых чисел, кратных 2; B множество целых чисел, кратных 3; U множество целых чисел. Описать множества: $A \cup B$, $A \cap B$, $\overline{A} \cup \overline{B}$, $\overline{A} \cap \overline{B}$.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература

1. Турецкий, В. Я. Математика и информатика. [Текст] : учеб. пособие / В. Я. Турецкий, М. : ИНФРА, 2005. – 560 с.

Дополнительная литература

- 2. Филимонова, Е. В. Математика и информатика [текст]: учебник / Е. В.Филимонова. М.: Издательско-толговая корпорация «Дашков и К°», 2007. 480 с.
- 3. Воронов, М. В. Математика для студентов гуманитарных факультетов [Текст]: учебник / М. В. Воронов, Г. П. Мещерякова. Ростов-на-Дону: Феникс, 2002.

Другие источники информации и средства обеспечения освоения дисциплины

4. Интернет http://www.ph4s.ru