ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 5

Элементы комбинаторики, теории множеств и математической логики

Основное содержание:

Логические операции. Построение таблиц истинности. Решение логических задач

Ход занятия

Теоретический материал

Основные понятия.

- 1 Логика наука о законах и формах мышления
- 2 Высказывание (суждение) некоторое предложение, которое может быть истинно (верно) или ложно
- 3 Утверждение суждение, которое требуется доказать или опровергнуть
- 4 Рассуждение цепочка высказываний или утверждений, определенным образом связанных друг с другом
- 5 Умозаключение логическая операция, в результате которой из одного или нескольких данных суждений получается (выводится) новое суждение
- 6 Логическое выражение запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0)
- 7 Сложное логическое выражение логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.
- 8 Алгебра логики это наука об общих правилах и законах действий над логическими переменными и высказываниями.
- 9 Самой простой логической операцией является операция НЕ, подругому ее часто называют отрицанием, дополнением или инверсией и обозначают NOT (). Если A истинно, то \bar{A} ложно и наоборот. Результат отрицания всегда противоположен значению аргумента. Логическая операция НЕ является унарной, т.е. действие выполняются над одним операндом. Таблица истинности:

Α	Ā
0	1
1	0

10 Логическое И еще часто называют конъюнкцией, или логическим умножением, а ИЛИ — дизъюнкцией, или логическим сложением. Операция И (обозначается «И», «and», «&», A•B) имеет результат «истина» только в том случае, если оба ее операнда истинны. Таблица истинности $F = A \land B$:

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

11 Операция ИЛИ (обозначается «ИЛИ», «ог», A+B, $A\lor B$) называется дизьюнкцией или логическим сложением и дает «истину», если значение «истина» имеет хотя бы один из операндов. Разумеется, в случае, когда справедливы оба аргумента одновременно, результат по-прежнему истинный. Таблица истинности $F = A \lor B$:

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

Операции И, ИЛИ, НЕ образуют полную систему логических операций, из которой можно построить сколь угодно сложное логическое выражение. В вычислительной технике также часто используется операции импликация и эквивалентность.

12 Логическое следование: импликация — связывает два простых логических выражения, из которых первое является условием (A), а второе (B) — следствием из этого условия. Результатом импликации является ЛОЖЬ только тогда, когда условие A истинно, а следствие B ложно. Обозначается символом "следовательно" и выражается словами ЕСЛИ ..., ТО ... Таблица истинности F = A \rightarrow B:

Α	В	F
0	0	1
0	1	1
1	0	0
1	1	1

13 Логическая равнозначность: эквивалентность — определяет результат сравнения двух простых логических выражений A и B. Результатом эквивалентности является новое логическое выражение, которое будет истинным тогда и только тогда, когда оба исходных выражения одновременно истинны или ложны. Обозначается символом "эквивалентности". Таблица истинности $F = A \leftrightarrow B$:

A	В	F
0	0	1
0	1	0
1	0	0
1	1	1

- 14 Порядок выполнения логических операций в сложном логическом выражении: 1. инверсия \to 2. Конъюнкция \to 3. Дизъюнкция \to 4. Импликация \to 5. Эквивалентность
- 15 Для изменения указанного порядка выполнения операций используются круглые скобки.

Операции И, ИЛИ, НЕ образуют полную систему логических операций, из которой можно построить сколь угодно сложное логическое выражение. В вычислительной технике также часто используется операции импликация и эквивалентность.

16 Штрих Шеффера, A|B или антиконъюнкция, по определению это отрицание конъюнкции $F = A|B = \overline{A \wedge B}$:

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

17 Стрелка Пирса, $A \downarrow B$ или антидизъюнкция, по определению $F = A \downarrow B = \overline{A \lor B}$:

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

18 Сумма по модулю два, $A \oplus B$ или антиэквивалентность, по определению $F = A \oplus B = \overrightarrow{A} \longleftrightarrow \overrightarrow{B}$.

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

19 Основные законы логики: А = А – закон тождества

А &
$$\overline{A} = 0$$
 — закон непротиворечия
 $A \vee \overline{A} = 1$ — закон исключенного третьего $\overline{\overline{A}} = A$ — закон двойного отрицания

— Свойства констант:
$$\bar{0}=1$$
 $\bar{1}=0$ $A \lor 0 = A$ $A \& 0 = 0$ $A \lor 1 = 1$ $A \& 1 = 1$

- Законы идемпотентности: A ∨ A = A; A & A = A
- Законы коммутативности: A ∨ B = B ∨ A; A & B = B & A
- Законы ассоциативности: A ∨ (B∨C) = (A∨B) ∨ C; A & (B&C) = (A&B) & C

Законы дистрибутивности: A√(B&C)=(A√B)&(A√C);

$$A&(B\lorC)=(A&B)\lor(A&C)$$

- Законы поглощения: A ∨ (A & B) = A; A & (A ∨ B) = A
- Законы де Моргана: $\overline{A \lor B} = \overline{A \& B}$; $\overline{A \& B} = \overline{A \lor B}$

Задание

- 1 Составить таблицу истинности сложного логического выражения
- 2 Для заданного логического выражения:
 - построить таблицу истинности;
 - упростить высказывание, используя равносильные преобразования;
 - полученный результат проверить, построив для него таблицу истинности.

Пример выполнения:

1 Исходные данные:

$$F = A \vee \overline{B} \wedge C$$

Решение:

- 1 Определим количество переменных их 3, значит количество строк в таблице истинности = $2^3 + 1 = 9$ (каждый операнд принимает одно из двух значений 0 или 1)
- 2 Определим количество и порядок действий: 3 действия ($\partial 1=\overline{B}$, $\partial 2=\partial 1\wedge C$ и $\partial 3=A\vee\partial 2$), значит количество столбцов = 3 (3 переменные) + 3 (3 действия) = 6
- 3 Составляем таблицу истинности, вписывая в соответствующие ячейки результаты действий, используя правила алгебры логики, например, если B=1, то $\overline{B}=0$: $\partial I=1$, C=1, то $\partial 1 \wedge C=1$ и т. д.

Α	В	С	∂I	<i>д2</i>	д3
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

2 Исходные данные:

$$(X \to Y) \land (Y \to Z) \to (Z \to X).$$

Решение:

$$1 \quad (X \to Y) \land (Y \to Z) \to (Z \to X).$$

2 Составим таблицу истинности для исходного выражения:

X	Y	Z	∂I	∂2	д3	∂4	<i>д5</i>
0	0	0	1	1	1	1	1
0	0	1	1	1	0	1	0
0	1	0	1	0	1	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	1	0	1
1	0	1	0	1	1	0	1
1	1	0	1	0	1	0	1
1	1	1	1	1	1	1	1

3 Упростим высказывание:

преобразуем импликацию:

$$(X \to Y)(Y \to Z) \to (Z \to X) = \overline{(X \lor Y)(Y \lor Z)} \lor \overline{(Z \lor X)};$$

воспользуемся законом де Моргана для преобразования инверсии:

$$(\overline{X} \vee Y)(\overline{Y} \vee Z) \vee (\overline{Z} \vee X) = (\overline{X} \vee Y) \vee (\overline{Y} \vee Z) \vee (\overline{Z} \vee X) = \overline{X} \overline{Y} \vee \overline{Y} \overline{Z} \vee \overline{Z} \vee X;$$

по закону двойного отрицания:

$$\overline{\overline{X}}\overline{Y} \vee \overline{\overline{Y}}\overline{Z} \vee \overline{Z} \vee X = X\overline{Y} \vee Y\overline{Z} \vee \overline{Z} \vee X;$$

перегруппируем высказывание и воспользуемся законом поглощения:

$$X\overline{Y} \lor Y\overline{Z} \lor \overline{Z} \lor X = X\overline{Y} \lor X \lor Y\overline{Z} \lor \overline{Z} = X \lor \overline{Z}$$

4 Составим таблицу истинности для полученного выражения:

X	Y	Z	\overline{Z}	$X \vee \overline{Z}$
0	0	0	1	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	1	1
1	1	1	0	1

Результирующие столбцы в двух таблицах совпали, следовательно, выполненные преобразования верны

Задания к практической работе.

Задание 1

1	F=	$A \lor$	$B \vee$	$(A \lor C)$	
_			_		

2
$$F = A \rightarrow B \lor C$$

$$3 F = B \vee (\overline{A} \leftrightarrow C)$$

4
$$F = \overline{B} \lor (A \leftrightarrow C)$$

5
$$F = A \wedge B \rightarrow \overline{B} \wedge C$$

6
$$F = A \wedge B \leftrightarrow \overline{B} \vee C$$

7
$$F = (A \lor \overline{B}) \lor (\overline{A} \to C)$$

8
$$F = (A \rightarrow B) \lor C$$

9
$$F = B \lor C \longleftrightarrow A \lor C$$

10
$$F = B \lor (A \land C \rightarrow B)$$

11
$$F = A \lor B \rightarrow \overline{B} \lor C$$

12
$$F = A \wedge B \leftrightarrow \overline{B} \vee C$$

13
$$F = A \rightarrow B \lor (A \lor C)$$

14
$$F = \overline{A} \land B \rightarrow \overline{B} \lor C$$

15
$$F = B \lor (\overline{A} \leftrightarrow C) \land A$$

16
$$F = A \leftrightarrow C \lor B \rightarrow A$$

17
$$F = A \leftrightarrow C \lor B \rightarrow A$$

18
$$F = (A \leftrightarrow C) \lor (B \to A)$$

19
$$F = A \leftrightarrow C \lor (B \rightarrow \overline{A})$$

20
$$F = A \leftrightarrow (C \lor B \rightarrow A)$$

21
$$F = (\overline{A} \leftrightarrow C) \lor B \rightarrow A$$

22
$$F = \overline{A} \leftrightarrow C \lor B \rightarrow A$$

23
$$F = A \wedge (B \rightarrow \overline{C}) \wedge C$$

24
$$F = A \land (B \leftrightarrow \overline{A}) \lor C$$

25
$$F = (C \lor B) \lor (A \lor C)$$

26
$$F = A \rightarrow B \lor (C \rightarrow B)$$

27
$$F = (A \land B \rightarrow \overline{B}) \land (C \lor \overline{A})$$

28
$$F = \overline{B} \lor (A \leftrightarrow C) \land C$$

29
$$F = A \wedge B \rightarrow \overline{B} \wedge C$$

30
$$F = A \wedge B \leftrightarrow \overline{B} \vee C$$

Задание 2

1
$$(A \leftrightarrow B) \lor A\overline{B} \lor C$$

2
$$(A \rightarrow B) \lor A\overline{C} \lor BC$$

$$3 \quad (AC \rightarrow B) \lor A\overline{C}$$

4
$$A\overline{B} \lor (A \leftrightarrow C)B$$

$$5 \quad (\overline{A} \rightarrow B)(A\overline{C} \lor BC)$$

6
$$(A \leftrightarrow C) \lor A\overline{B} \lor AC$$

7
$$(A \leftrightarrow C) \lor A\overline{B} \lor BC$$

8
$$(C \leftrightarrow B) \lor A\overline{C} \lor BC$$

9
$$(BC \rightarrow A) \lor A\overline{C}$$

10
$$(AB \rightarrow C) \lor A\overline{C}$$

11
$$(\overline{A} \rightarrow C)(B\overline{C} \lor AB)$$

12
$$(\overline{A} \leftrightarrow B)(A \to BC)$$

13
$$(B \rightarrow C) \lor A\overline{B} \lor AC$$

14
$$(A \rightarrow \overline{B}C) \lor A\overline{B} \lor B\overline{C}$$

15
$$(AC \rightarrow \overline{B}) \vee B\overline{C}$$

16
$$B \lor (A \leftrightarrow CB) \lor A\overline{C}$$

17
$$(AC \rightarrow B) \lor AB\overline{C}$$

18
$$(\overline{A} \leftrightarrow C)(B\overline{C} \to AB)$$

19
$$(B \rightarrow C) \lor (B \rightarrow AC)$$

20
$$(AB \rightarrow C) \lor A \lor AC$$

21
$$(A \leftrightarrow C) \lor (A\overline{B} \to C)$$

22
$$(\overline{A}B \rightarrow \overline{C}) \vee ABC$$

23
$$(AB \rightarrow C) \lor A\overline{C}$$

24
$$(\overline{A} \rightarrow BC)(A \leftrightarrow C)$$

25
$$(\overline{A} \leftrightarrow B) \lor (A \to BC)$$

26
$$(\overline{A \to B})(\overline{CA} \to B)$$

27
$$(A \rightarrow \overline{B}C) \lor A\overline{B} \lor BC$$

28
$$(A \rightarrow C) \lor A\overline{B} \lor BC$$

29
$$(\overline{A} \rightarrow \overline{B})(B\overline{A} \rightarrow C)$$

30
$$(AB \rightarrow \overline{C}) \vee A\overline{B}C$$

Контрольные вопросы:

- 1 Что такое логика?
- 2 Что называется вы сказыванием?
- 3 Что такое утверждение?
- 4 Что называется рассуждени ем?
- 5 Что такое умозаключение?
- 6 Что такое логическое выражение?
- 7 Какие бывают логические выражения?
- 8 Что такое алгебра логики?
- 9 По нятие, обозначение и таблица истинности инверсии.
- 10 Понятие, обозначе ние и таблица истинности конъюнкции.
- 11 Понятие и обозначение и таблица истинности дизъюнкции.
- 12 Понятие, обозначение и таблица истинности импликации.
- 13 Понятие, обозначение и таблица истинности эквивалентно сти
- 14 Порядок действий в сложных логических выражений.
- 15 Способ из менения порядка действий в логических выражениях.
- 16 Понятие, обозначе ние и таблица истинности штриха Шеффера
- 17 Понятие, обозначение и таблица истинности стрелки Пирса
- 18 Понятие, обозначение и таблица ис тинности суммы по модулю два
- 19 Закон двойного отрицания
- 20 Законы идемпотентности
- 21 Коммутативные законы
- 22 Ассоциативные законы
- 23 Дистрибутивные законы
- 24 Законы де Моргана
- 25 Законы нуля и единицы
- 26 Законы поглощения
- 27 Закон исключенного третьего и закон противоречия
- 28 Формула преобразования импликации
- 29 Формула преобразования эквивалентности

Литература:

- 1 Горбатов В. А. Дискретная математика: учебник для вузов / В. А. Горбатов, А. В.
- Горбатов, М. В. Горбатова . М. : АСТ, 2003. 447 с. : рис., табл. (Выс шая школа). Библиогр.: с.441-444.
- 2 Новиков Ф. А. Дискретная математика: учебник для вузов / Ф. А. Новиков. СПб : Питер, 2007. 364 c.
- 3 Хаггарти Р. Дискретная математика для программистов / Р. Хаггарти. М.: Техносфера, 2005. 400 с.
- 4 Осипова В.А. Основы дискретной математики/В.А.Осипова М.: ФО РУМ: ИНФА-М, 2012. 160 с.
- 5 http://rudocs.exdat.com/docs/index-59747.html
- 6 http://www.ido.rudn.ru/nfpk/inf/inf7.html
- 7 http://informatika.sch880.ru/p25aa1.html
- 8 http://window.edu.ru/library/pdf2txt/659/47659/23617